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A synthetic approach to model the analytical complexity 
of biological proteolytic digests has been developed. 
Combinatorial peptide libraries ranging in length between 
9 and 12 amino acids that represent typical tryptic digests 
were designed, synthesized, and analyzed. Individual 
libraries and mixtures thereof were studied by replicate 
liquid chromatography-ion trap mass spectrometry and 
compared to a tryptic digest of Deinococcus radiodurans. 
Similar to complex proteome analysis, replicate study of 
individual libraries identified additional unique peptides. 
Fewer novel sequences were revealed with each additional 
analysis in a manner similar to that observed for biological 
data. Our results demonstrate a bimodal distribution of 
peptides sorting to either very low or very high levels of 
detection. Upon mixing of libraries at equal abundance, 
a length-dependent bias in favor of longer sequence 
identification was observed. Peptide identification as a 
function of site-specific amino acid content was character-
ized with certain amino acids proving to be of considerable 
importance. This report demonstrates that peptide libraries 
of defined character can serve as a reference for instrument 
characterization. Furthermore, they are uniquely suited to 
delineate the physical properties that influence identification 
of peptides, which provides a foundation for optimizing the 
study of samples with less defined heterogeneity. 

Whole organism or blood serum proteomes are complexsboth 
in terms of total number of proteins and dynamic range.1-3 

Current analytical platforms, such as the liquid chromatography-
mass spectrometry (LC-MS) commonly employed in proteomic 
analyses, are challenged to deal with these two features, motivat-
ing the development of improved instrumentation. Reference or 
standard samples would be valuable for this purpose, but a suitable 
model has remained elusive. Biological samples are inherently 
diverse; even the best-characterized organisms vary their protein 
expression based on diet, growth conditions, age, and disease. 

Attempts have been made to model proteome complexity;4-7 

however, these model systems lack the desired complexity, are 
prone to contamination, and are costly and tedious to produce. A 
robust standard that closely mimics proteome complexity and can 
be produced at a reasonable cost would enable platform compari-
son, further the understanding of variables and limitations associ-
ated with proteome analysis, and potentially serve as an internal 
or external standard for routine proteomics analysis. 

Here, we propose to use combinatorial libraries of synthetic 
peptides to mimic a bottom-up proteomic sample. This approach 
has many advantages. First, the experimenter can define the 
diversity in a library, establishing sample complexity. One can 
also define the amino acid composition of peptides in a library, 
which allows access to a wide range of chemical properties. Even 
some typical post-translational modifications can be introduced 
through derivatization or incorporation of modified amino acid 
residues. Known composition also enables efficient database 
searching to interpret MS/MS spectra for peptide identification. 
Lastly, peptide libraries can be mixed in precise ratios to establish 
the dynamic concentration range of a sample. Given these 
advantages, peptide libraries may potentially be valuable in 
proteomic analyses as a reference or standard sample from which 
the capabilities of analytical platforms can be characterized. This 
approach also complements recent interlaboratory efforts to 
develop a yeast standard8 for the investigation of performance 
metrics regarding separation, ionization, precursor sampling, and 
peptide identification in LC-MS analyses.9 

As a first step, we have carefully designed and synthesized 
four peptide libraries to closely resemble a generic proteome 
digest. We have performed replicate LC-MS analyses of individual 
libraries and library mixtures to characterize their analytical 
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complexity. For comparison to biological samples, analogous 
experiments were performed on a tryptic digest of the Deinococcus 
radiodurans bacterial proteome. Probabilistic theoretical simula-
tions were performed to model detectability distributions for 
complex mixtures. Briefly, peptide detectability refers to the 
probability that a peptide is detected in a standard shotgun 
proteomics analysis. Probability of detection is likely influenced 
by peptide abundance, matrix effects, sample preparation, instru-
mental sensitivity, and identification method; standard peptide 
detectability, however, is taken to be an intrinsic property of the 
peptide sequence and, for biological samples, its protein of 
origin.10 These simulations successfully predict a bimodal distribu-
tion of standard peptide detectability for individual libraries. 
Furthermore, our results suggest preferential detection of longer 
peptide sequences, an interesting result that likely has implications 
in quantitative proteomics studies and might be addressable by 
implementation of peptide libraries as internal standards. Lastly, 
we demonstrate the potential role of combinatorial libraries as 
ideal models to systematically probe chemical and structural 
features of peptides and the possible impact such specific changes 
have on peptide identification. 

EXPERIMENTAL SECTION 
Library Design. This study focuses on four libraries of 

peptides ranging between 9 and 12 residues in length. These 
libraries are designated as BB9A through BB12A, respectively, 
and their composition is shown in Table 1. Tryptic peptides 
detected in previous experiments were selected as templates for 
each library to increase the resemblance of a proteome digest. 
The original sequences are shown in the top rows in Table 1. 
The sequences SAVTALWGK and FLASVSTVLTSK, both identi-
fied in direct-infusion electrospray ionization-ion mobility 
spectrometry-mass spectrometry (ESI-IMS-MS) analysis of a 
human hemoglobin digest,11 were selected as templates for BB9A 
and BB12A, respectively. NTMILEICTR from complement com-

ponent C3 and ATEHLSTLSEK from apolipoprotein A-I were 
identified in SCX-RPLC-IMS-MS mapping of a human plasma 
digest12 and chosen as templates for BB10A and BB11A, respec-
tively. Permutations for each position (shown as columns) were 
assigned such that the hydrophobicity distribution of each library 
was similar to that for tryptic peptides of the same length in the 
human proteome.13 Also, the distribution of amino acids in the 
four libraries matches the relative abundance of amino acids in a 
collection of more than 1150 proteins from several organisms 
within ±0.5%.14 Lastly, the possible permutations in the different 
libraries were scaled to produce similar numbers of unique 
sequences; 3888 peptides in BB9A, 5184 peptides in the BB10A, 
4608 peptides in BB11A, and 4096 peptides in BB12A. 

Peptide Synthesis. Combinatorial libraries of peptides were 
created following typical solid-phase synthesis and split-and-mix 
techniques.15 Reagents were purchased from Midwest Biotech 
(Indianapolis, IN) except where noted. In this scheme, the 
C-terminal residue is anchored to phenylacetamidomethyl (PAM) 
resin beads and the growing peptide chain is constructed by 
addition of N-tert-butoxycarbonyl (Boc)-protected amino acids and 
3-(diethoxy-phosphoryloxy)-3H-benzo[d][1,2,3]triazin-4-one (DEPBT, 
purchased from National Biochemicals, Twinsburg, OH) as a 
coupling reagent. For the purpose of synthesizing tryptic-like 
peptides, the synthesis began with a mixture of PAM resin beads 
preloaded with arginine or lysine residues. Coupling reactions 
were performed in separate vessels for each residue with the Boc-
protected amino acid and DEPBT present at 10-fold molar excess. 
By adding each amino acid in a separate vessel with 10-fold molar 
excess of reagent, equimolar incorporation of each amino acid at 
a give position is ensured. In order to incorporate two or more 
amino acids at a given position, beads were dried, divided equally 
by mass, and redistributed among the reaction vessels prior to 
the next coupling step. Upon cleavage and side-chain deprotection 
with hydrofluoric acid, the retrieved peptides were purified via 
lyophilization. The efficiency of peptide synthesis was verified 
using LC-MS data. A larger database containing all possible 
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Table 1. Composition of Synthetic Peptide Libraries 

position no. 

library name 1 2 3 4 5 6 7 8 9 10 11 12 

BB9A (3888 peptides) S A V T A L W G K 
C D I E P D Q D R 
L Y N F V 

BB10A (5184 peptides) N T M I L E I C T R 
E L A D A F P V L K 

G Y G Q 

BB11A (4608 peptides) A T E H L S T L S E K 
Y Q A V G P N P G I R 

I F 

BB12A (4096 peptides) F L A S V S T V L T S K 
G N D I G H P E M Q A R 
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peptide sequences that arise from omission of a single amino acid 
residue was constructed for each library and observed to identify 
very few deletion peptides. Chemical stability of the peptide 
libraries appears to be robust; samples stored at -20 °C (as solid 
or in solution) yield similar results to solutions stored in an 
autosampler at 10 °C over the course of 3 months. 

Biological Sample Preparation. For the D. radiodurans 
digest, proteins were extracted by four passes through a French 
press at 16 000 psi and cleared by centrifugation at 13 000g for 45 
min. Replicate 250 µL protein extracts (estimated protein concen-
tration of 10.3 mg/mL) were digested overnight with trypsin in 
the presence of 0.05% RapiGest SF (Waters, Milford, MA) acid-
labile surfactant and 25 mM ammonium bicarbonate after reduc-
tion and alkylation with dithiothreitol and iodoacetamide. Trypsin 
was deactivated, and the acid-labile surfactant was cleaved with 
the addition of 5 µL of 90% formic acid followed by incubation at 
37 °C for 2 h and centrifugation at 13 000g for 10 min. The peptide 
samples were cleaned by solid-phase extraction using a Waters 
OASIS HLB cartridge and the manufacturer’s protocol. After 
removing the solvent by speed-vac at 45 °C for 2 h, the digest 
was suspended in 200 µL of solvent A. 

LC-MS Analysis. All data reported here were recorded on 
an LCQ DecaXP Plus (Thermo Scientific, Waltham, MA) ion trap 
mass spectrometer. For synthetic libraries, sample sizes between 
1 fmol and 1pmol per peptide (based on average molar mass of 
the library) were tested for optimal LCQ performance (Figure 1). 
The optimum loading amount (100 fmol per peptide, or 410, 592, 
564, and 528 ng of BB9A, BB10A, BB11A, and BB12A, respec-
tively) was then used to collect 10 replicate analyses for each 
library using a 120 min gradient from 97% to 60% solvent A (97% 
water, 3% acetonitrile with 0.1% formic acid) at 250 nL/min using 
an Eksigent nano-LC 2D (Dublin, CA). Solvent B is acetonitrile 
with 0.1% formic acid. The sample is first loaded on a 15 mm ×0.1 
mm i.d. fritted trapping column packed in-house with 5 µm, 200 
Å pore MAGIC C18AQ particles (Michrom Bioresources, Auburn, 
CA). Separation occurs in a 150 mm ×75 µm i.d. pulled-tip capillary 
column packed in-house with 5 µm, 100 Å pore MAGIC C18AQ 
particles. Eluting peptides are electrosprayed directly into the 
source of the LCQ Deca XP ion trap mass spectrometer where 
they are analyzed by a recurring sequence of one mass spectrum 
from m/z 300 to 1500 followed by two tandem mass spectra of 

the two most intense ions. A dynamic exclusion protocol is 
employed such that each precursor mass is analyzed only twice 
before it is excluded for 45 s. The D. radiodurans digest was 
analyzed under LC-MS conditions identical to those used for the 
synthetic libraries with an injected mass of 1.29 µg, assuming 
quantitative recovery from solid-phase extraction sample cleanup. 

Data Analysis. For database searching, all possible sequences 
within a library were concatenated and treated as a single protein 
in a custom database. Mascot version 1.9 was used to query the 
custom database by setting the enzyme specificity to trypsin and 
allowing for zero missed cleavages and variable modification of 
oxidized methionine. The precursor mass tolerance was set to 
±1.5 Da and the fragment ion tolerance to ±0.8 Da using 
monoisotopic masses. A peptide score threshold of 25 was chosen 
for parsing the results as it produced as few as zero matches to 
the reverse sequence for the respective synthetic libraries in the 
database. Searches of the D. radiodurans data against the reverse 
D. radiodurans database as a decoy resulted in an FDR of 3.9% 
using a Mascot score threshold of 25. Three different methods of 
estimating the FDR for the synthetic libraries are explained in 
the Supporting Information. The first method used the D. 
radiodurans proteome as a decoy database and resulted in FDR 
values ranging from 1.9% to 4.4% depending on the library (see 
Supporting Information Table S-1). The other two methods used 
searches that included decoy sequences with one deletion, two 
consecutive deletions, or one amino acid insertion and produced 
less conservative FDR values ranging from 1.89% to 2.14% or highly 
conservative FDR values ranging from 4.07% to 9.44% (see 
Supporting Information Table S-2). These combined estimates 
confirm that a reasonable estimate of FDR for the synthetic library 
database searches is less than 5%. 

RESULTS AND DISCUSSION 
Optimizing the Synthetic Library Injection Amount. Sev-

eral experimental parameters, such as nano-LC gradient length, 
dynamic exclusion settings, and the mass of peptides loaded onto 
the instrument, were optimized prior to replicate analyses. The 
optimal injection amount for each peptide library was expected 
to be important for two reasons. Insufficient mass would generate 
little usable data due to instrumental sensitivity limits, whereas 
excessive amounts of sample can overload the column and impair 
chromatography performance. Optimal injection amounts for each 
library were determined by triplicate injections of each library from 
1 fmol to 1 pmol per peptide, as shown in Figure 1. At lower 
injection amounts, below 10 fmol, the number of identifications 
decreases for all peptides with the shorter-length libraries exhibit-
ing a more dramatic reduction. This result indicates the sensitivity 
limit of the mass spectrometer, which apparently varies for these 
libraries in a seemingly length-dependent manner. At larger 
injection amounts, increasing the injection amount beyond 100 
fmol results in fewer peptide identifications for all four libraries. 
Investigation of the data in more detail illustrates that broadened 
peaks in the chromatogram likely lead to selection of fewer unique 
precursor ions compared to the optimal 100 fmol injection amount. 
It should be noted that these data were acquired over a period of 
several weeks and that varied tuning conditions of the mass 
spectrometer and different nano-LC columns were used. 

Hydrophobicity Distributions of Libraries. Hydrophobicity 
is a simple metric that can describe similarity between peptide 

Figure 1. Average number of unique peptides identified from each 
peptide library (analyzed in triplicate) for injection amounts ranging 3 
orders of magnitude. Results indicate that 100 fmol per peptide is 
the optimum sample size for this platform for all four libraries. 
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library models and proteomic samples. Not only is it desirable 
for our model system to adhere to the naturally observed 
hydrophobicity distribution, it is also important to consider 
potential biases that occur if the distribution for the libraries falls 
outside of a practical range. Peptides that are too hydrophobic 
might fail to be detected due to insufficient solubility, whereas 
peptides that are too hydrophilic might not be retained sufficiently 
on the trapping column of the nano-LC system. Figure 2 compares 
the hydrophobicity distribution of 6000 random length-matched 
tryptic sequences from the human proteome13 (thick lines) to that 
of the designed libraries (thin lines). Median and quartile values 
for these distributions are reported in Supporting Information 
Table S-3. The hydrophobicity scale used here corresponds to 
that developed by Eisenberg et al.;16 other scales produced similar 
results. The hydrophilic portion of the distribution for the human 
sequences is slightly more populated than libraries BB11A and 
BB12A, but overall widths and ranges of distributions for peptide 
libraries are in good agreement with their proteome counterpart. 
The dashed lines in Figure 2 show the distribution of identified 
peptides from 10 replicate analyses of the libraries. Identifications 
are obtained across the libraries’ distributions and show no 
significant bias. This result reaffirms the widespread use of 
reversed-phase liquid chromatography in shotgun proteomics, 
although the ability to identify extremely low or high hydropho-
bicity peptides by this approach may be problematic and deserves 
further investigation. 

Comparison between Synthetic and Biological Samples. 
Individual peptide libraries were subjected to 10 replicate LC-MS 
analyses to assess the depth of analysis this platform can achieve 
in regard to the complexity of our model system. Because each 
library contains thousands of peptides at approximately equal 
abundance, competitive ionization was expected to result in 
peptide identifications that are fairly random, causing significant 
additional unique identifications to be obtained with each replicate. 
Alternatively, biological samples typically contain peptides present 
at abundances varying by several orders of magnitude. In this 
circumstance, one would suspect that the most abundant com-
ponents are detected redundantly and additional unique identifica-
tions obtained from replicate analyses correspond to inconsistent 
detection of less abundant peptides. Experimental results from 
replicate analyses of peptide libraries and the D. radiodurans 
sample are shown in Figure 3. The cumulative peptide identifica-
tions for the BB12A, BB11A, and BB10A libraries seem to scale 
similarly with each replicate, with slightly fewer identifications in 
the libraries of shorter lengths. This trend may be explained by 
the tendency for longer peptides to receive higher Mascot scores. 
Also, BB10A contains more components than BB11A, which 
contains more components than BB12A. Thus, it could also be 
reasoned that increased complexity may lead to increased coelu-
tion, competitive ionization, and convoluted MS/MS spectra. The 
results from BB9A appear slightly different. In a single analysis, 
it ranks second to BB12A for identified peptides, yet it quickly 
intersects the curves for BB11A and BB10A to yield the fewest 
identifications of the libraries after six replicates. Initially, this 
shallow curve was thought to be the result of exhaustive analysis 

of the library, as BB9A contains the fewest number of components. 
However, when these data are plotted to show the percent of each 
library identified per replicate (see Supporting Information Figure 
S-1), only ∼60% of BB9A can be assigned after 10 replicates, which 
is within the range observed for the other libraries (49%, 56%, and 
72% for BB10A, BB11A, and BB12A, respectively). It is possible 
that our choice of template peptide and permutations for the BB9A 

(16) Eisenberg, D.; Schwarz, E.; Komarony, M.; Wall, R. J. Mol. Biol. 1984, 
179, 125–142. 

Figure 2. Normalized histograms of the hydrophobicity distributions 
for 6000 random length-matched peptides from the human proteome 
(thick lines), all peptides from the synthetic libraries (thin lines), and 
peptides identified from individual libraries (dashed lines). 
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library has introduced some unanticipated properties and is an 
ongoing point of interest in this study. The replicate curve for an 
equimolar mixture of these peptide libraries (open black dia-
monds) displays the opposite trend of BB9A. The increased 
complexity in the library mixture exacerbates the effect of 
competition in the sample, yielding fewer identifications in a single 
analysis than any of the individual libraries. Identifications also 
become more random, leading to a greater number of unique 
identifications upon replicate analysis. 

The LC-MS results for the D. radiodurans digest (open black 
squares) show significantly fewer identifications for a single 
LC-MS/MS analysis as well as after 10 replicates than for any of 
the synthetic libraries for similar amounts loaded on column. This 
is consistent with the dynamic range of peptide abundance in the 
biological sample; the D. radiodurans digest is anticipated to 
contain over 50 000 peptides present across 5 orders of magnitude 
in abundance.17 Consequently, the peptides from the most 
abundant proteins are repeatedly detected, whereas lower-
abundance species are detected less consistently or not at all. The 
average length of peptides identified in the D. radiodurans digest 
was 12.5 residues (data not shown), which suggests the lengths 
of the peptide libraries are appropriate to model tryptic peptides. 
In general, the replicate curves for our peptide libraries and D. 
radiodurans sample appear similar to other reports that involve 
extensive replicate analyses of proteomic samples.18 The curvature 
of these lines appears to depend not only on complexity, but also 
on composition or length as well (as observed for BB9A). These 
results demonstrate that model libraries can be created that 
produce replicate curves resembling biological systems of interest. 

Proteome digests typically contain several peptides at high 
abundance that may be readily identified in every replicate. 
Peptides detected in only one replicate are thought to be less 
abundant (or possibly false positives). Although identification of 
many peptides from a biological digest in all 10 replicates would 
be expected for mainly those peptides from higher abundance 
proteins, most identified peptides should presumably be detected 
in one (or at most, a few) replicates. For synthetic libraries in 
which all sequences are present at equimolar concentrations, 
coelution and competitive ionization likely result in a smaller 
fraction of peptides detected in 10 of 10 replicates as compared 
to a biological digest where peptides from the highest concentra-
tion proteins should be favored. In Figure 4, results for these 
samples are plotted as the number of unique peptides identified 
in an exact number of replicates. The data point at one replicate 
represents the peptides detected in exactly one of the 10 LC-MS 
replicates, whereas the data point at 10 replicates represents 
peptides detected in all 10 LC-MS analyses. For the D. radiodu-
rans digest, the observed bimodal distribution was anticipated 
given the dynamic range of biological samples. The distribution 
is also remarkably symmetric with nearly as many peptides 
detected in every analysis as are in only one of the 10 replicates. 
Curiously, the synthetic libraries also give rise to bimodal 
distributions. Although this result may not be intuitive, it appears 
to be consistent with a simple theoretical model discussed below. 
This bimodal distribution can also result from peptides with 
different precursor ion intensities (probably related to relative gas-
phase basicity) where readily ionized peptides can be identified 
in all replicates while poorly ionized peptides are identified less 
frequently. Indeed, plots of average precursor ion peak areas and 
apex peak intensities for peptides found in different number of 
replicates show an increasing trend from peptides identified in 
one replicate to those identified in all 10 (see Supporting 
Information Figure S-2). It is also curious that in the case of the 
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Figure 3. Cumulative unique peptide identifications obtained upon subsequent analyses up to 10 replicates for BB12A, BB11A, BB10A, and 
BB9A (black, red, blue, and green diamonds, respectively). Results for a mixture containing 50 fmol per peptide from all four libraries are shown 
in open diamonds. Data for replicates of a tryptic digest of D. radiodurans are shown in open squares. The data point at one replicate represents 
the average number of unique identifications among all 10 replicates, rather than the number in any one replicate. 
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BB9A library, more peptides are identified in every replicate than 
are identified in exactly one replicate. This is consistent with the 
data for BB9A in Figure 3, which shows a large number of 
identifications for BB9A in the first replicate and fewer additional 
identifications in subsequent replicates compared to other libraries. 

Library Mixtures at Varying Relative Abundance. To more 
closely resemble a biological sample, peptide libraries can be mixed 
in different ratios to establish a dynamic range of abundance. From 
injection optimization experiments (Figure 1), we know the ion trap 
mass spectrometer is sensitive to individual libraries at abundances 
between 1 fmol and 1 pmol, with the greatest sensitivity from 10 to 
100 fmol. Therefore, analysis of library mixtures in this range of 
abundance should not be limited by instrumental sensitivity, but 
rather the competition related to the concentration profile for a 
particular mixture. Analysis of individual libraries shows evidence 

that each library differs at least slightly in terms of the number of 
identifications that can be achieved. Varying the relative abundance 
of these libraries will almost certainly result in further bias, but to 
what extent is not obvious. Figure 5 shows the results of replicate 
analyses of mixtures of peptide libraries BB9A, BB10A, BB11A, and 
BB12A. In these data, each cluster of bar graphs corresponds to 
LC-MS results for different library mixtures. The composition of 
each mixture is denoted along the x-axis as femtomoles of BB9A, 
BB10A, BB11A, and BB12A, respectively. The hollow bars indicate 
the relative abundance of each library in the prepared mixture, and 
the solid bars reflect the fraction of total identifications that cor-
respond to a particular library upon LC-MS analysis. The equal 
abundance mixture, which contained 50 fmol per peptide for each 
library, suggests peptides of increasing chain length account for a 
much higher proportion of peptide identifications. At each extreme, 

Figure 4. Number of unique peptides identified in a particular number of replicate analyses. For example, the data points at 1/10 reflect the number 
of peptides detected in only one replicate for its respective sample, whereas 10/10 gives the number of peptides detected in every replicate. 

Figure 5. Peptide identifications from triplicate analyses of peptide library mixtures at differing relative abundances. Hollow bars indicate the solution-
phase abundance of each library, whereas solid bars show the fraction of peptide identifications pertaining to particular libraries upon triplicate analysis 
of each mixture. Abundance ratios are given below each bar graph cluster in femtomoles of BB9A/BB10A/BB11A/BB12A, respectively. 
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BB12A accounts for nearly 50% of assignments, whereas BB9A falls 
below 2%. Equimolar mixtures with 20 and 100 fmol per peptide gave 
similar results (data not shown). It also seems unlikely that choice 
of template peptide and library design would cause such a large 
difference in response, especially given the similarities of the data 
when each library is analyzed individually. 

One possible interpretation of the length dependence result is 
that, under these competitive conditions, peptides are ionized 
preferentially due to differences in apparent gas-phase basicity.19-22 

For doubly charged tryptic-like peptides in linear conformations, 
increased chain length would result in greater separation of charged 
sites (N-terminus and C-terminal basic residue) and thus less 
destabilization through Coulombic repulsion. Because the electro-
static interaction follows an inverse-square law, this effect might be 
sensitive to relatively small changes in length. When the libraries 
are analyzed individually, chain length is fixed and the limited 
number of excess charges in the electrospray droplet would ionize 
the peptides based on other properties. In competition among 
peptides of different size, however, length may become a significant 
parameter and contribute to the results seen here. Extracted 
precursor peak intensities for the experiments used for Figure 5 were 
compared among the four libraries and clearly demonstrate that 
longer peptide sequences resulted in larger average peak intensities 
and the trend was length dependent (see Supporting Information 
Figure S-3). This interpretation is consistent with another report 
which determined length to be a feature positively correlated with 
peptide detectability in a machine learning model.10 

The middle two plots of Figure 5 show results for mixtures 
where the peptide libraries are present at concentrations 
differing by factors of two. The 12.5:25:50:100 mixture contains 
BB12A as the most abundant library, and considering the bias 
favoring longer peptides, it is not surprising that over 85% of 
the peptides identified from this mixture are from BB12A. In 
addition, the other libraries are effectively suppressed with 0.4% 
and 13.9% of identifications attributed to BB10A, and BB11A, 
respectively, and zero identifications from BB9A. In the 100: 
50:25:12.5 mixture, nearly the same number of peptides are 
identified from BB9A and BB10A, even though BB10A is 
present at half the abundance of BB9A. Also, the suppression 
of other libraries is not as significant here, with BB11A 
accounting for 22% of identified peptides, and curiously, 
BB12A’s relative response is approximately reflective of its 
solution-phase relative abundance. Lastly, 200:80:60:40 cluster 
of bar graphs represents an effort to create a mixture that yields 
equal response across all four libraries. In this mixture, >100 
peptides can be assigned from each library. Also, each library 
accounts for at least 10% of identifications and no single library 
contributes more than 45% of identifications. Results for these 
mixtures demonstrate the number of peptide identifications in 
a mixture does not relate to solution-phase abundance in a 
straightforward manner. Although the results from these 
mixtures might seem nightmarish for quantitation in biological 
samples, protein digests will produce peptides of various 

lengths, and it is possible that this effect will be mitigated to 
some degree. 

Replicate Analyses of an Equimolar Mixture of Peptide 
Libraries. Two scenarios can be used to envision the dynamics 
involved in detecting peptides in the more complex mixtures of 
libraries, such as those for which the results are shown in Figure 5. 
First, because some subset of each library can be detected in 10 of 
10 replicate analyses of that library, it may be possible that these 
peptides will still be favored for detection versus the remaining, less 
detectable peptides. In the second scenario, the roughly 4-fold 
increase in sample complexity reduces the likelihood of each peptide 
being selected for MS/MS so that even the most detectable peptides 
are identified less frequently. Because a comparable number of 
peptides can be detected in a single analysis for single libraries and 
library mixtures (Figure 3), one or both of these scenarios (or a 
suitable alternative) must be invoked. 

To discern which of these mechanisms dominates, 10 LC-MS 
replicates were performed on the equimolar library mixture (50 fmol 
each). The results are shown in Figure 6 and plotted similarly to 
Figure 4, giving the number of peptides that are identified in an exact 
number of up to 10 replicates. In Figure 6A, the unique peptide 
identifications have been sorted according to library of origin and 
we observe a strong bias toward longer peptides similar to Figure 5. 
A strong peak at 10 replicates is not observed in Figure 6A and, thus, 
no bimodal distribution. This invokes the second scenario above 
involving increased competition, causing highly detectable peptides 
within each library to be suppressed by the presence of three other 
libraries of similar complexity at equal abundance. As a result, 

(19) Gross, D. S.; Williams, E. R. J. Am. Chem. Soc. 1995, 117, 883–890. 
(20) Petrie, S.; Javahery, G.; Bohme, D. K. Int. J. Mass Spectrom. Ion Processes 

1993, 124, 145–156. 
(21) Petrie, S.; Javahery, G.; Wincel, H.; Bohme, D. K. J. Am. Chem. Soc. 1993, 

115, 6290–6294. 
(22) Petrie, S.; Javahery, G.; Wang, J.; Bohme, D. K. J. Phys. Chem. 1992, 96, 

6121–6123. 

Figure 6. Peptides identified in exact numbers of replicates (A) for 
an equimolar mixture of the BB9A, BB10A, BB11A, and BB12A 
libraries, each present at 50 fmol. The lower panel (B) shows the 
same data plotted normalized to the total number of identified peptides 
from each library. 

6565 Analytical Chemistry, Vol. 82, No. 15, August 1, 2010 



identifications are obtained more randomly and most peptides are 
identified in only one or two replicates. Nevertheless, some peptides 
from the BB12A, BB11A, and BB10A libraries are detected in all 10 
replicates, indicating the first scenario involving highly detectable 
peptides contributes slightly in these data. Figure 6B shows the same 
data normalized to the total number of identifications for a given 
library. It is interesting to note that, for the fraction of peptides 
identified in exactly one replicate, the ordering of the libraries roughly 
inverts, with >60% of peptides identified from BB9A occurring in only 
1 of 10 replicates, compared to ∼40% for the other three libraries. 
The fraction of peptides identified in a given number of replicates 
for BB9A correspondingly decreases with additional replicates more 
rapidly than the other libraries. These features of the data from BB9A 
appear to be consistent with those when the BB9A library is analyzed 
individually. 

Theoretical Model Considerations. We have employed a 
probabilistic approach with a few simple assumptions to generate 
hypothetical results for a reasonable number of replicate analyses 
of complex mixtures. Assume that there are n copies of a peptide 
in a given sample admitted into the LC-MS system and that the 
probability of ionizing a single copy of the peptide is p. Further, 
assume that the analytical platform can identify this peptide if its 
ion count (i.e., its number of ionized peptides) is greater than or 
equal to some threshold c. Obviously, p and c values are 
determined by the peptide sequence and experimental protocol. 
Given these assumptions, the detectability of the peptide, i.e., the 
probability that this peptide is detected, at quantity n can be 
expressed as 

d(n) ) ∑ 
kgc 

(n
k )pk(1 - p)n-k (1) 

where k is the number of peptides reaching the detector. In the 
limit, and for large n, this truncated sum of binomial distributions 
can be approximated by the integration of a Gaussian distribution. 
Thus, the detectability of a peptide at quantity n can be expressed 
as 

d(n) ) Φ(np - (c - 1/2) 
√np(1 - p) ) (2) 

where Φ(x) is the standard Gaussian cumulative density function. 
Using this relationship, we can estimate the distribution of peptide 
detectability f(d) as  

f(d) ) 

f(np - (c - 1/2) 
√np(1 - p) ) 
(Φ-1(d)) 

(3) 

where (x) is the standard Gaussian probability density function. 
Note that the denominator here is independent of n, p, and c, 
whereas the numerator is the density function of a random 
variable. Quantity c - 1/2 was introduced to provide more 
accurate integration. For standard detectability, peptide number 
n will be a constant. Thus, if the variability of p and c is not very 
large, we can assume that the random variable in the numerator 
of eq 3 is uniformly distributed within a certain range of 
parameters. From this, eq 3 can be simplified to 

f(d) ) 
1 

(Φ-1(d)) 
(4) 

which is a symmetric “U-shaped” distribution (Figure 7A). 
Using a Monte Carlo simulation, we further investigated whether 

this theoretical model can also explain the “L-shaped” distribution 
of effective peptide detectabilities (i.e., the probability of detection 
of peptides in nonequimolar mixtures). First, we assumed a power 
law distribution (r ) -2.0) for protein quantity n and Gaussian 
distributions for peptide ionization probability p and detection cutoff 
c. We sampled 2000 proteins as the protein mixture. Each protein 
was assumed to have exactly 30 peptides, with one same quantity n 
sampled from the power law distribution and different p and c values 
sampled from uniform and Gaussian distributions, respectively. 
Effective peptide detectability can then be computed using eq 2 for 
each peptide in each protein. Protein identification protocol was 
simulated using Bernoulli trials with the success probabilities 
equaling effective peptide detectabilities as parameters for each of 
the 2000 proteins. Only proteins with g2 identified peptides were 
retained. Finally, we collected effective detectabilities of the peptides 
from these proteins only and obtained the histogram of detectabilities 
as an approximation of the distribution. Surprisingly, we found that 
the distribution of effective detectabilities obtained by this theoretical 
analysis was “L-shaped” (Figure 7B) or a left-skewed “U-shape” (data 
not shown). This result was robust to the parameters used in the 
simulation and even choice of probability distributions. For example, 

Figure 7. Results of theoretical modeling of peptide detectability 
predicting (A) a bimodal distribution of peptide standard detectability 
for a mixture of peptides in equal abundance and (B) the same 
treatment on a mixture of peptides whose relative abundances follow 
a power law distribution, resulting in a rapidly decaying distribution 
of effective detectability. 
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using Gaussian or Beta distributions for p and keeping c as constant 
resulted in a similar conclusion. 

These theoretical simulations successfully predict the detect-
ability curves for the libraries when analyzed individually (Figure 
4). Due to equal abundance of peptides within a library, libraries 
were not expected to contain many peptides that would be 
identified in all 10 replicates. Each library presented here shows 
evidence for a significant number of highly detectable peptides, 
however, as predicted by this model. The BB9A library even 
shows a roughly symmetrical distribution with slightly more 
highly detectable peptides relative to less detectable peptides. 
Other peptide libraries show evidence for left-skewed bimodal 
distributions. Replicates from an equimolar peptide library mixture 
(Figure 6) do not exhibit a local maximum for highly detectable 
peptides. This might be due to competition between these highly 
detectable peptides across libraries, or perhaps the high detect-
ability is insufficient given the increased total number of peptides 
in the mixture and the analytical platform capacity. Although 
Figure 6 strongly resembles the “L-shaped” distribution from 

Figure 7B, it is important to note that this trend is observed for 
different reasons. Libraries are mixed at equimolar ratios, albeit 
with a length-dependent detection bias, to generate the data shown 
in Figure 6, whereas the model used to generate the data in Figure 
7B relies on protein abundances that follow a power law distribution. 

Peptide Library Model Application: Amino Acid Prefer-
ence. Combinatorial libraries of peptides offer a unique opportunity 
to study specific and systematic changes in peptide composition. 
What effect, for example, does a single mutation in a peptide 
sequence have on its detection in a complex mixture? Biological 
systems are not well-suited to study this phenomenon as the number 
of peptides that differ only by a single amino acid substitution is quite 
low within the proteome of a single organism. In contrast, peptide 
libraries synthesized combinatorially as described here result in 
hundreds of sets of peptides for which only one residue is different. 
Figure 8 illustrates how the point mutation question might be 
addressed using combinatorial libraries of peptides. At each position, 
the fractional abundance of the possible amino acids is shown in four 
bar graphs. The possible amino acids can be thought of as different 
mutations, and the bar height reflects the fraction of identified 

Figure 8. Illustration of the influence of choice of amino acid on likelihood of peptide identification. A set of four bar graphs is assigned to each 
site for each library. The leftmost bar represents all peptides at equal abundance in a library. The second bar reflects the preference in detection 
for cumulative peptide identifications after five replicates. The third bar is based on peptides identified in a randomly selected replicate. The 
fourth bar represents the amino acid preference observed for peptides identified in all five replicates. 
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peptides with that particular amino acid. The leftmost bar represents 
amino acids at equal abundance, which the libraries should ap-
proximate within the precision of the split-and-mix steps of the 
synthesis. The second bar from the left shows the fractional 
abundance of each amino acid for all peptides identified in five 
replicate LC-MS analyses. The third bar shows the amino acid 
abundance observed for peptides identified in a single random 
replicate, and the rightmost bar represents amino acid abundance 
for peptides that are observed in all five replicates. In this format, 
one can readily discern the effect of a mutation on detection and the 
identity of preferred or disfavored amino acids by whether the size 
of an amino acid’s respective bar changes from left to right. 
Furthermore, the observed effect of a mutation is expected to become 
more exaggerated as the identification criteria become more strin-
gent, and this trend is observed in most cases. 

Fractional abundances for many sites change very little and 
remain representative of equal abundance. Not only does this result 
confirm the robustness of the synthetic approach but also suggests 
these mutations have little impact on detectability. One might 
anticipate a mutation involving similar amino acids to show little 
preference, as in the case of valine and isoleucine in site 3 of BB9A 
which vary only by a methylene group. Lack of preference can also 
be observed, however, for mutations that differ more significantly. 
Site 4 in BB10A varies between tyrosine, isoleucine, and aspartic acid, 
yet there is only slight preference (<5% fractional abundance) for 
the former two at the expense of the latter. Some trends appear to 
be general; for example, cysteine, histidine, and methionine residues 
appear to hinder identification. In the case of cysteine and histidine, 
oxidation arising either during the electrospray ionization or as a 
result of drying during split-and-mix steps of the synthesis was 
evaluated to determine if it contributes to this observation. Variable 
modification of methionine by oxidation was included in all searches, 
so other than spreading the signal from methionine-containing 
peptides into multiple MS peaks, which may be significant, this 
modification is addressed. Database searches with oxidation as a 
variable modification for cysteine and histidine increased peptide 
identifications by as much as 10%, though typical levels appear to be 
only 2% (data not shown). Thus, we conclude that oxidation of 
cysteine and/or histidine is not the main cause of their disfavor. 
Histidine may potentially be disfavored because it introduces a basic 
site in the peptide, increasing the charge state from two to three. 
The tendency of doubly charged peptide ions to produce fragmenta-
tion spectra with higher Mascot scores might explain the detrimental 
effect of histidine on identification. Some mutations are preferred in 
some contexts while disfavored in others. Proline, for instance, is 
disfavored in competition with alanine at site 5 in BB9A but is 
preferred over isoleucine at site 7 in BB10A. Still, little if any 
preference for proline is observed over serine at site 6 in BB11A. 
These cases are expected to be the result of more complex 
mechanisms, such as pairwise interactions with other amino acids 
or altered fragmentation pathways. Lastly, it is worth noting that 
although trends observed in these data might be specific to these 
libraries, systematic design and analysis of a sufficient number of 
libraries could elucidate more general interpretations. 

CONCLUSIONS 
We have described our approach to design combinatorial 

libraries of peptides as a robust and reproducible standard to 
model the analytical complexity of biological samples. Four 

libraries of different chain lengths, each containing a few thousand 
peptides, were adjusted to closely resemble the hydrophobicity 
distribution and amino acid composition of a typical proteome. 
Preliminary data from an LCQ ion trap mass spectrometer suggest 
this sample is sufficiently complex to reproduce some features of 
a proteome digest sample. When analyzed individually, each 
library appears to contain a subset of peptides that are repeatedly 
detected in every replicate analysis, as would the peptides from 
abundant proteins in a biological sample. Upon combining these 
four libraries at equal abundance, we observe a chain-length 
dependence on peptide identification that we tentatively attribute 
to increased gas-phase basicity of longer peptides. Further work 
is aimed at determining the extent to which amino acid composi-
tion may influence this trend. As a model system, the peptide 
libraries presented here can be used to determine all 13 chroma-
tography metrics, all 6 sampling metrics, 5 of the 6 ion source 
metrics (lack of +4 ions), all 11 MS1 signal metrics, all 7 MS2 
signal metrics, and 4 of the 5 peptide identification metrics (lack 
of semitryptic peptides) described in a recent CPTAC study.9 

Although not investigated in this study, other analytical platforms 
with different separation techniques, ionization sources, mass 
analyzers, and data analysis algorithms are expected to produce 
other limits of detection and optimal injection amounts, especially 
with more sensitive ion trap instruments. We demonstrate here 
that even with instruments of modest sensitivity and simple data 
analysis tools, peptide libraries are useful proteomics models. 

Combinatorial libraries are also superb models for probing specific 
properties relevant to peptide identification (such as those regarding 
chromatographic retention times or fragmentation patterns) in a sys-
tematic fashion. An example of such a study is reported here, which 
examines the effect of amino acid composition on likelihood of detection 
in a complex mixture. Some effects seem to be general, such as the 
bias against detection of cysteine-, methionine-, or histidine-containing 
sequences. Other amino acid substitutions show varying effects in 
different contexts, which will likely require additional libraries and more 
sophisticated data analysis to investigate sufficiently. 

Overall, it appears that synthetic peptide libraries provide an alterna-
tive or at least a complement to standard biological samples as models 
of proteome complexity. Although biological standards allow evaluation 
of sample handling and protease digestion protocols, the abundance of 
individual proteins and peptides in these samples is difficult to character-
ize. Analytical platform performance can be readily evaluated using well-
defined peptide libraries whose complexity and abundance can be 
carefully controlled and whose sequences are known. 
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